

Conditional Extremes

Find, if they exist, the conditional extremes of the following function: $f(x, y) = 6 - 4x - 3y$ Subject to: $x^2 + y^2 = 1$. Take into account the second order conditions.

Solution

We build the Lagrangian:

$$\begin{aligned} L &= 6 - 4x - 3y + \lambda(1 - x^2 - y^2) \\ L'x &= -4 - \lambda 2x = 0 \\ L'y &= -3 - \lambda 2y = 0 \\ L'\lambda &= 1 - x^2 - y^2 = 0 \end{aligned}$$

I solve for λ and equate:

$$\begin{aligned} \lambda &= -4/2x \\ \lambda &= -3/2y \\ -4/2x &= -3/2y \\ 4y/3 &= x \end{aligned}$$

I substitute into the third restriction:

$$\begin{aligned} 1 - (4y/3)^2 - y^2 &= 0 \\ 1 - 16y^2/9 - y^2 &= 0 \\ 1 &= 25y^2/9 \\ 9/25 &= y^2 \end{aligned}$$

So that $y = 3/5$ or $y = -3/5$. If $y = 3/5$ then $x = (4/3)(3/5) = 4/5$. If $y = -3/5$, then $x = (4/3)(-3/5) = -4/5$. Therefore, we have two extremes: $(4/5, 3/5)$ and $(-4/5, -3/5)$.

Next, to check whether these points are maximum or minimum, we construct the bordered Hessian which

has the following form: $\bar{H} = \begin{pmatrix} 0 & g'x & g'y \\ g'x & L''xx & L''xy \\ g'y & L''yx & L''yy \end{pmatrix}$ Where we have:

$$\begin{aligned} g'x &= -2x \\ g'y &= -2y \\ L''xx &= -2\lambda \\ L''yy &= -2\lambda \\ L''yx &= L''xy = 0 \end{aligned}$$

The bordered Hessian then takes the following form:

$$\bar{H} = \begin{pmatrix} 0 & -2x & -2y \\ -2x & -2\lambda & 0 \\ -2y & 0 & -2\lambda \end{pmatrix}$$

We calculate the determinant of the bordered Hessian to check if it is positive or negative semi-definite, thus determining if we are dealing with a minimum, maximum, or saddle point:

The determinant of the bordered Hessian:

$$\begin{aligned} 0[(-2\lambda)(-2\lambda)] - (-2x)[(-2x)(-2\lambda) - 0(-2y)] - 2y[(-2x)0 - (-2y)(-2\lambda)] \\ 2x[4x\lambda] - 2y[-4y\lambda] = 8x^2\lambda + 8y^2\lambda \end{aligned}$$

Evaluating at the first point $(4/5, 3/5)$ and considering that $\lambda = -4/2x = -5/2$.

The determinant of the Hessian is $8(4/5)^2(-5/2) + 8(3/5)^2(-5/2) < 0$. Therefore, we are dealing with a minimum.

Evaluating at the other point: $(-4/5, -3/5)$ and considering that $\lambda = -4/2x = 5/2$. The determinant of the bordered Hessian is: $8(-4/5)^2(5/2) + 8(-3/5)^2(5/2) > 0$ Therefore, we are dealing with a maximum.